

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

先进增材制造技术及耐磨涂层

机械加工及生物医学学院

硕

殷

都柏林圣三一大学 Trinity College Dublin, the University of Dublin https://www.tcd.ie/mecheng/staff/yins/

2022.07.06 - 武汉大学水资源与水电工程科学国家重点实验室学术交流汇报

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Introduction to Trinity College Dublin

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Trinity Additive Manufacturing Lab

Lab Resources

- ***** We are a young research lab, established in 2019
- ***** We have **1** Cold Spray, **2** SLM, **1** DLP, **1** DIW printers
- ***** We print polymers, metals, ceramics, and composites
- We have 2 Postdoc, 9 PhDs, 1 visiting PhD now
- **We published more than 150 papers and 1 book**
- ***** We have a total research fund of over **3.0** M euro

Lab Research

Selected Research

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Research Background

Additive Manufacturing is an evolutionary technology and represents the future.

Biomedical

Aviation

Military

Digital, customization, design freedom, complex parts

Research Background

- Layer-by-layer "fusion-solidification"
- Near-net-shape components with complex structure
- Digital, customization, high design freedom, small batch

Key sectors: aviation, aerospace, bio-medical, nuclear

Additive Manufacturing: process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies, such as CNC milling.

Subtractive manufacturing

Additive manufacturing

Additive Manufacturing (AM) or 3D Printing "I guess the two definitions are valid"

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Manufacturing Principles

Mmanufacturing process

- CAD/CAM
- Reverse engineering (collect data from real object through 3D scanning and then input into CAD/CAM software)
- Cutting slices in CAD/CAM or special AM pre-processing software
- Exporting 3D printable .STL file
- Inputting .STL file into AM machine for executing
- Defining scanning parameters in on the AM machine control panel

- SLM: SLM uses high-power laser to melt and solidify <u>metallic</u> powders in a powder bed layer by layer based on a pre-defined CAD model.
- **Printing procedure:** CAD model buildup \rightarrow slicing \rightarrow laser parameter setup
 - \rightarrow import file to printer \rightarrow print.

Key components: laser, scanner system, platform, spreader, powder bed

Commercial airplanes can have up to 700 seat belt buckles. A standard buckle weight is around 155g in Steel. With SLM and Ti alloys, the buckles' weight can be reduced to 68g. If all the conventional buckles are replaced by the SLM light-weight buckles, during the entire serving lifetime, an A380 can save fuels of 3,300,000 L and reduce CO₂ emission of 0.74Mt.

Light-weight parts

Light-weight design

Practical parts

Arts and Crafts

Prototype / Demo

- LMD: a nozzle moves in multiple directions and deposits metal powder layer by layer based on CAD model. The powder material is melted immediately upon deposition and solidifies to form a special shape.
- □ Printing procedure: CAD model buildup \rightarrow slicing (layer thickness) \rightarrow laser and powder flow parameter setup \rightarrow import file to printer \rightarrow print
- □ Key components: nozzle, laser beam, powder feeding system

Laser Metal Deposition (LMD)

Thin-wall structured components

Structure restoration and modification

- WAD: WAD is developed based on conventional wire welding processes. Metal wires are melted and deposited by high-temperature electric (or plasma) arc layer by layer to form a specific shape.
- □ Characteristics: low cost, fast production, low precision, less automation

Key components: welding power source, torches and wire feeding system

Wire Arc Deposition (WAD)

Wire Arc Deposition (WAD)

我国第一台3D打印冲击式水轮机转轮(哈电集团)

- CSD: a nozzle moves in multiple directions and deposits metal powder layer by layer based on CFD model. The deposition is achieved <u>through solid-</u> <u>state plastic deformation</u> upon impact to form a special shape.
- □ Printing procedure: CAD model buildup \rightarrow slicing (layer thickness) \rightarrow gas and powder flow parameter setup \rightarrow import file to printer \rightarrow print
- Key components: nozzle, compressed gas (air, nitrogen, helium), powder feeding system, gas heater

Cylindrical and thin-wall structures

LMD	CSD		
Thermal energy	Kinetic energy		
Melting	Solid		
Slow	Fast		
Higher mechanical properties	Lower mechanical properties		

Structure restoration and modification

Repair (aircraft)

CSAM in the US Army

FRC	Nomenclature	Part Number	Replacement Cost*	Quantity Recovered to Date	Costs Avoided**
Southwest	F/A-18A/B/C/D AMAD Gearbox Housing (PTS Axis)	42312-231	\$31,593.00	11	\$318,648
Southwest	F/A-18A/B/C/D/E/F APG- 73 Radar Rack Assembly	5099984	\$193,510.00	20	\$3,690,200
Southwest	F/A-18E/F/G AMAD Main Housing (Hydraulic Pad)	764035B	\$168,573.00	10	\$1,672,730
Southwest	F/A-18E/F AMAD Main Housing (Internal Gear Damage)	764035B	\$168,573.00	4	\$666,292
Southwest	F/A-18E/F Brake Carrier	2612020	\$8,057.00	65	\$347,165
Southwest	F/A-18E/F/G AMAD Hydraulic Gear Shaft	764123	\$1,485.92	42	\$9,492
Southwest	F/A-18A/B/C/D Outboard Wheel Bolt Spot Face	2606302-1	\$7,664.67	0	\$ -
East	H-1 Combining Gearbox		\$756,000.00	12	\$9,072,000
Totals:					\$15,776,527

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Wear-resistance Coating Technologies

Thermal Spraying: molten or semi-molten feedstock are sprayed onto a substrate, where they solidify and adhere to the surface

Feedstock form:

- ✓ Powder (mostly) and wire
- Sources for melting feedstock:
 - ✓ Oxyfuel flame (oxygen, air and fuel gases), electric arc, plasma arc

<u>Coating materials:</u>

- ✓ Metals and alloys
- ✓ Ceramics
- ✓ Cermet composites

<u>Substrates:</u>

- ✓ Metals and alloys,
- ✓ Ceramics
- ✓ Glass

Thermal spraying processes

- Plasma spraying
- Wire arc spraying
- High velocity oxygen fuel (HVOF) spraying
- High velocity air fuel (HVAF) spraying
- Warm spraying/cold spray

Advantages

- High adhesion and cohesion
- Various coating and substrate materials
- High efficiency and deposition rate
- Thicknesses: 0.05 to 2.5 mm
- Wide applications

Applications

- Wear and corrosion resistance
- Thermal barrier coating
- Thermal conductive coating
- Electrical conductive coating
- Damaged component repair.

<u>Vaper Deposition</u>: form a coating through vapor condensing on a substrate or chemical reaction of a vaper with a substrate surface.

Vaper deposition processes

- Physical Vapor Deposition (PVD): gas (vapor) physically deposit on substrate surface
- Chemical Vapor Deposition (CVD): gas (vapor) chemically react with substrate materials to form coatings

Vacuum Evaporation: deposit pure metals onto a substrate by first transforming them from solid to vapour state in a vacuum and then letting them condense on the 'cold' substrate surface.

General deposition steps

- \checkmark Vacuum the chamber
- ✓ Create coating vapour
- ✓ Vapour transports to the substrate
- ✓ Vapour condenses on the substrate surface

Sputtering deposition: the source material (sputter) is bombarded by energized argon ions (in plasma state), causing atoms to escape from the surface of the sources material, and then be deposited onto a substrate to form a thin film coating.

- Applicable for nearly all materials: metals, ceramics, polymers
- High cost
- Substrate is usually heated for better adhesion
- Applications: low-emissivity glass, solar cell, anti-reflection glass

Applications of PVD coatings:

- ✓ Decorative coatings
- ✓ Low emission glasses for solar cell
- ✓ Ant-reflection coating onto optical lenses
- ✓ Conductive coating in circuits
- \checkmark Titanium nitride (*TiN*) onto cutting tool for wear resistance

Chemical Vapor Deposition

CVD working principle

Chemical Vapor Deposition

Applications:

- Solar cells
- Refractory metals on jet engine turbine blades
- Resistance to wear, corrosion, erosion

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Wear-resistance Coating Research in Trinity

水轮机叶片的冲蚀及热喷涂涂层

受到冲蚀破坏后的水轮机部件

- ✓ 造成破坏的主要原因是颗粒冲 蚀以及气蚀。
- ✓ 水轮机叶片及部件耐磨涂层通 常为WC-Co涂层
- ✓ 通常采用热喷涂,如超音速火 焰喷涂,电弧喷涂等

冷喷涂Ni-WC-Co金属基复合材料耐磨涂层

冷喷涂Ni-WC-Co复合耐磨涂层

冷喷涂Ni-WC-Co金属基复合材料耐磨涂层

7.575±1.921e⁻⁶

 $3.382 \pm 1.020e^{-6}$

Trinity College Dublin, The University of Dublin

F2

F3

冷喷涂Ni-WC-Co金属基复合材料耐磨涂层

冷喷涂Ni-WC-Co复合耐磨涂层的冲蚀实验结果

冷喷涂高熵合金耐磨涂层

涂层耐磨性测试试验机

- Polycrystalline grains of varying shapes and sizes
- ✓ Grain boundaries represent week spots

- ✓ Cooled faster than atoms can rearrange into a crystal
- \checkmark High strength and hardness
- ✓ High corrosion resistance
- ✓ High electrical resistance
- ✓ Excellent magnetic properties

3 µm

Zr55 particle

(small size)

particle (d_{particle}≈ 15 μm)

substrate

✤ Zr55

Density: 99.70 %

Microstructure and mechanism

Mechanism II

有限元数值分析非晶颗粒在形成涂层过程中的变形行为

Crystallization behaviours

In-situ observation

- Cu-coated diamond
- Size: 47-53m/s
- Shape: irregular
- *** Element six**

Low velocity

High velocity

Numerical simulation

In-situ observation

等离子喷涂高熵合金耐磨涂层

采用等离子喷涂制备的高熵合金耐磨涂层

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Other 3D-Printing technologies in Trinity

3D printing of β -TCP

Why β-TCP and DLP?

- Bone defect healing
- Bioactive
- Degradable
- High precision
- Customization

Challenge?

- Feedstock design
- Microstructure defects
- Brittle and low strength
- Lack of in-vitro/in-vivo tests
- **Control of degradation rate**

3D printing of β -TCP

3D printing of β -TCP

<u>Project Goal</u>: to develop a β -TCP scaffold having excellent mechanical and biological properties for bone defects healing

DLP lattice scaffolds

- Scaffold design: unit cell structure, strut diameter, pore size, porosity, and geometric correction.
- ② Printing parameters: layer thickness, exposure time, etc.
- ③ Sintering parameters: dwelling time, maximum temperature, cooling, etc.
- ④ Bioinstructive additives: bioactive proteins, growth factors, cells, etc.

Microstructure

- Direct ink writing (DIW): shear-thinning nanoparticle ink is extruded through a micrometer- sized glass nozzle and deposit on substrate
- □ Characteristics: tiny components, most cutting-edge, high cost of ink
- Key components: ink, nozzle and feeding mechanism

Micro-Scale Additive Manufacturing

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

谢谢各位老师同学 请大家批评指正

European Space Agency

IRISH RESEARCH COUNCIL

An Chomhairle um Thaighde in Éirinn

Advanced Manufacturing Research Centre

European nnovation Council

